(→Time Invariance) |
(→Example of a time invariance system) |
||
Line 10: | Line 10: | ||
== Example of a time invariance system == | == Example of a time invariance system == | ||
+ | |||
+ | |||
+ | |||
+ | <math>y(t) = x(t) \,</math> | ||
+ | |||
+ | <math>x(t) --> [system] --> x(t) --> [delay] --> | ||
+ | |||
+ | <math>x_1(t) \,</math> undergoes a time delay before it is inputted into the system : <math>x_1(t) = x(t - \delta) \,</math> | ||
+ | |||
+ | It is then inputted into the system, <math>y_1(t) = 2x_1(t) = 2x(t - \delta) \,</math> | ||
+ | |||
+ | If the system is shifted after the signal undergoes the transformation, then <math>y_2(t) = y(t - \delta) = 2x(t - \delta) = y_1(t)\,</math> | ||
+ | |||
+ | The signal doesn't depend on the time when the signal is being inputted, thus it's time invariant | ||
+ | |||
+ | |||
+ | |||
System is: <math> f(x) = 23x \,</math> | System is: <math> f(x) = 23x \,</math> | ||
Line 26: | Line 43: | ||
<math> f(x) = 23x \,</math> | <math> f(x) = 23x \,</math> | ||
− | |||
− | |||
− | |||
− | |||
== Example of a non time invariance system == | == Example of a non time invariance system == |
Revision as of 18:11, 10 September 2008
Contents
Time Invariance
A system is called time invariance if and only if:
$ x(t) --> [system] --> [time delay] --> y(t)\, $
yields the same result as
$ x(t) --> [time delay] --> [system] --> y(t) \, $
Example of a time invariance system
$ y(t) = x(t) \, $
$ x(t) --> [system] --> x(t) --> [delay] --> <math>x_1(t) \, $ undergoes a time delay before it is inputted into the system : $ x_1(t) = x(t - \delta) \, $
It is then inputted into the system, $ y_1(t) = 2x_1(t) = 2x(t - \delta) \, $
If the system is shifted after the signal undergoes the transformation, then $ y_2(t) = y(t - \delta) = 2x(t - \delta) = y_1(t)\, $
The signal doesn't depend on the time when the signal is being inputted, thus it's time invariant
System is: $ f(x) = 23x \, $
$ X_1(t) = t^2 \, $
$ X_2(t) = 2t^2 \, $
$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) \, $
$ f(at^2 + 2bt^2) = af(t^2) + bf(2t^2) \, $
$ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $
$ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $
$ f(x) = 23x \, $
Example of a non time invariance system
System is: $ f(x) = 23x + 1\, $
$ X_1(t) = t^2 \, $
$ X_2(t) = 2t^2 \, $
$ f(aX_1 + bX_2) \neq af(X_1) + bf(X_2) \, $
$ f(at^2 + 2bt^2) \neq af(t^2) + bf(2t^2) \, $
$ f(at^2 + 2bt^2) \neq a(23t^2+1) + b(23*(2t^2)+1) \, $
$ f(at^2 + 2bt^2) \neq 23 at^2 + 1 + 46 bt^2 + b \, $
$ f(at^2 + 2bt^2) \neq 23 (at^2 + 2bt^2) + a + b \, $
$ f(x) \neq 23x + 1 \, $
Reference
http://kiwi.ecn.purdue.edu/ECE301Fall2008mboutin/index.php/Concepts_and_Formulae