(→Time Invariance) |
|||
Line 3: | Line 3: | ||
A system is called time invariance if and only if: | A system is called time invariance if and only if: | ||
− | <math>x(t) --> [system] --> [time delay] --> y(t) and | + | <math>x(t) --> [system] --> [time delay] --> y(t)\,</math> |
+ | |||
+ | and also | ||
+ | |||
+ | <math>x(t) --> [time delay] --> [system] --> y(t) \,</math> | ||
== Example of a time invariance system == | == Example of a time invariance system == |
Revision as of 18:00, 10 September 2008
Contents
Time Invariance
A system is called time invariance if and only if:
$ x(t) --> [system] --> [time delay] --> y(t)\, $
and also
$ x(t) --> [time delay] --> [system] --> y(t) \, $
Example of a time invariance system
System is: $ f(x) = 23x \, $
$ X_1(t) = t^2 \, $
$ X_2(t) = 2t^2 \, $
$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) \, $
$ f(at^2 + 2bt^2) = af(t^2) + bf(2t^2) \, $
$ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $
$ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $
$ f(x) = 23x \, $
Example of a non time invariance system
System is: $ f(x) = 23x + 1\, $
$ X_1(t) = t^2 \, $
$ X_2(t) = 2t^2 \, $
$ f(aX_1 + bX_2) \neq af(X_1) + bf(X_2) \, $
$ f(at^2 + 2bt^2) \neq af(t^2) + bf(2t^2) \, $
$ f(at^2 + 2bt^2) \neq a(23t^2+1) + b(23*(2t^2)+1) \, $
$ f(at^2 + 2bt^2) \neq 23 at^2 + 1 + 46 bt^2 + b \, $
$ f(at^2 + 2bt^2) \neq 23 (at^2 + 2bt^2) + a + b \, $
$ f(x) \neq 23x + 1 \, $
Reference
http://kiwi.ecn.purdue.edu/ECE301Fall2008mboutin/index.php/Concepts_and_Formulae