Line 22: Line 22:
  
 
<math> f(x) = 23x \,</math>
 
<math> f(x) = 23x \,</math>
 +
 +
 +
  
  
 
== Example of a non-linear system ==
 
== Example of a non-linear system ==
 +
System is: <math> f(x) = 23x + 1<math>
 +
<math>X_1(t) = t^2 \,</math>
 +
 +
<math>X_2(t) = 2t^2 \,</math>
 +
 +
 +
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2) </math>
 +
 +
<math>f(at^2 + 2bt^2) = af(t^2) + bf(t^2) </math>
 +
 +
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \,</math>
 +
 +
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \,</math>
 +
 +
<math> f(x) = 23x \,</math>

Revision as of 16:21, 10 September 2008

Linearity

A system is called linear if and only if:

$ f(ax_1 + bx_2) = af(x_1) + bf(x_2) $

Example of a linear system

System is: $ f(x) = 23x \, $

$ X_1(t) = t^2 \, $

$ X_2(t) = 2t^2 \, $


$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) \, $

$ f(at^2 + 2bt^2) = af(t^2) + bf(t^2) \, $

$ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $

$ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $

$ f(x) = 23x \, $



Example of a non-linear system

System is: $ f(x) = 23x + 1<math> <math>X_1(t) = t^2 \, $

$ X_2(t) = 2t^2 \, $


$ f(aX_1 + bX_2) = af(X_1) + bf(X_2) $

$ f(at^2 + 2bt^2) = af(t^2) + bf(t^2) $

$ f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \, $

$ f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \, $

$ f(x) = 23x \, $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009