Line 20: | Line 20: | ||
== Example of a Linear System == | == Example of a Linear System == | ||
+ | <font size="3">Equation: <math>y[n] = 2 x[n]</math></font> | ||
+ | |||
+ | <math>x_{1}[n] \to sys \to *a \to</math> | ||
+ | <math>+ \to 2a x_{1}[n] + 2b x_{2}[n]</math> | ||
+ | <math>x_{2}[n] \to sys \to *b \to</math> | ||
+ | |||
+ | <math>x_{1}[n] \to *a \to</math> | ||
+ | <math>+ \to sys \to 2a x_{1}[n] + 2b x_{2}[n]</math> | ||
+ | <math>x_{2}[n] \to *b \to</math> | ||
+ | |||
+ | <font size="3">Since <math>2a x_{1}[n] + 2b x_{2}[n]</math> and <math>2a x_{1}[n] + 2b x_{2}[n]</math> are equal, the system is linear.</font> | ||
== Example of a Non-Linear System == | == Example of a Non-Linear System == | ||
− | <font size="3">Equation | + | <font size="3">Equation: <math>y[n] = x[n]^2</math></font> |
<math>x_{1}[n] \to sys \to *a \to</math> | <math>x_{1}[n] \to sys \to *a \to</math> |
Latest revision as of 12:19, 10 September 2008
Definition
If
$ x_{1}(t) \to sys \to *a \to $ $ + \to a x_{1}(t) + b x_{2}(t) $ $ x_{2}(t) \to sys \to *b \to $
And
$ x_{1}(t) \to *a \to $ $ + \to sys \to a x_{1}(t) + b x_{2}(t) $ $ x_{2}(t) \to *b \to $
And $ a $ and $ b $ are any complex number,
Then the system is linear.
Example of a Linear System
Equation: $ y[n] = 2 x[n] $
$ x_{1}[n] \to sys \to *a \to $ $ + \to 2a x_{1}[n] + 2b x_{2}[n] $ $ x_{2}[n] \to sys \to *b \to $
$ x_{1}[n] \to *a \to $ $ + \to sys \to 2a x_{1}[n] + 2b x_{2}[n] $ $ x_{2}[n] \to *b \to $
Since $ 2a x_{1}[n] + 2b x_{2}[n] $ and $ 2a x_{1}[n] + 2b x_{2}[n] $ are equal, the system is linear.
Example of a Non-Linear System
Equation: $ y[n] = x[n]^2 $
$ x_{1}[n] \to sys \to *a \to $ $ + \to a x_{1}[n]^2 + b x_{2}[n]^2 $ $ x_{2}[n] \to sys \to *b \to $
$ x_{1}[n] \to *a \to $ $ + \to sys \to (a x_{1}[n] + b x_{2}[n])^2 $ $ x_{2}[n] \to *b \to $
Since $ a x_{1}[n]^2 + b x_{2}[n]^2 $ and $ (a x_{1}[n] + b x_{2}[n])^2 $ are not equal, the system is not linear.