(Linear System Example)
(Linear System Example)
Line 13: Line 13:
  
 
Consider the system  
 
Consider the system  
<math> \mathbf{y}[n]=\mathbf{x}[n]\cdot\mathbf{M} </math>  
+
<math> y[n]=x[n]\cdot\mathbf{M} </math>  
  
  
Line 37: Line 37:
  
  
<math>y[kb]=ky[b] \,</math>
+
<math>y[ka]=ky[a] \,</math>
  
  
  
Here is the proof that the first prop holds.
+
Here is the proof that the first prop holds:
  
<math> \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} </math>   
+
<math> y[a] = \begin{bmatrix}8 & 12 \end{bmatrix} </math>   
  
  
<math> \mathbf{y}[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} </math>   
+
<math> y[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} </math>   
  
  
 
<math>y[a]+y[b]=  \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix}</math>
 
<math>y[a]+y[b]=  \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix}</math>
 +
 +
 +
And the second:
 +
 +
<math>ky[a] = \,</math>

Revision as of 05:44, 11 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t_0)=x(t) + x(t_0)\, $

and

$ x(kt)=kx(t)\, $

Linear System Example

Consider the system $ y[n]=x[n]\cdot\mathbf{M} $


let

$ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


$ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $


$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $

$ k=3\, $


If the system is linear these properties hold:


$ y[a+b]=y[a]+y[b] \, $


$ y[ka]=ky[a] \, $


Here is the proof that the first prop holds:

$ y[a] = \begin{bmatrix}8 & 12 \end{bmatrix} $


$ y[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} $


$ y[a]+y[b]= \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix} $


And the second:

$ ky[a] = \, $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett