(Linear System Example)
(Linear System Example)
Line 13: Line 13:
  
 
Consider the system  
 
Consider the system  
<math> \mathbf{y}[n]=\mathbf{x}[b]\cdot\mathbf{M} </math>
+
<math> \mathbf{y}[n]=\mathbf{x}[n]\cdot\mathbf{M} </math>  
where
+
<math> \mathbf{y}[b] = \begin{bmatrix}16 & 6 \end{bmatrix} </math>,
+
<math> \mathbf{x}[n] = \begin{bmatrix}4 & 1 \end{bmatrix} </math>, and
+
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
+
  
  
 +
let   
 +
 +
<math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>
 +
 +
 +
<math> \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>
 +
 +
 +
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
  
let    <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>
+
<math> k_1=1</math>
 +
<math> k_2=2</math>
  
  

Revision as of 05:36, 11 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[n]=\mathbf{x}[n]\cdot\mathbf{M} $


let

$ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


$ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $


$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $

$ k_1=1 $ $ k_2=2 $


If the system is linear these properties hold:


$ y[a+b]=y[a]+y[b] \, $


$ y[kb]=ky[b] \, $


Here is the proof that the first prop holds.

$ \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} $


$ \mathbf{y}[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} $


$ y[a]+y[b]= \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal