(New page: ==Part(a)== Show that P(B) > P(C) > P(T) > P(A): - P(H) = p , 0 < p < 1 <math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math> Recall geometric series: <math> \...) |
(→Part(a)) |
||
Line 9: | Line 9: | ||
Recall geometric series: | Recall geometric series: | ||
− | <math> \sum_{i=0}^\ | + | <math> \sum_{i=0}^\infty x^i = 1\{1-x}, for |x| < 1 </math> |
Revision as of 16:00, 9 September 2008
Part(a)
Show that P(B) > P(C) > P(T) > P(A):
- P(H) = p , 0 < p < 1
$ P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} $
Recall geometric series:
$ \sum_{i=0}^\infty x^i = 1\{1-x}, for |x| < 1 $