(Linear System Example)
(Linear System Example)
Line 12: Line 12:
  
  
Consider the system <math>\mathbf{x}\mathbf{M}=\mathbf{b} </math>where <math>I^n</math> is the identity matrix and y(t) and x(t) are n x 1 vectors.
+
Consider the system  
 +
<math> \mathbf{x}\mathbf{M}=\mathbf{b} </math>  
 +
where <math>\mathbf{M}=\begin{bmatrix}
 +
  1 & 2 \\
 +
  3 & 4 \\
 +
\end{bmatrix}</math> is the identity matrix and y(t) and x(t) are n x 1 vectors.
 
<math>Insert formula here</math>
 
<math>Insert formula here</math>

Revision as of 08:55, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{x}\mathbf{M}=\mathbf{b} $ where $ \mathbf{M}=\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} $ is the identity matrix and y(t) and x(t) are n x 1 vectors. $ Insert formula here $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett