(Part A)
(Part A)
Line 5: Line 5:
 
[[Image:sahw1a2_ECE301Fall2008mboutin.jpg]]
 
[[Image:sahw1a2_ECE301Fall2008mboutin.jpg]]
  
The plot on the left shows the same signal but in DT (y[n] = sin(n)).  The sampling frequency is at <math>\pi/2</math> (y[n] = sin(<math>(\pi/2)</math>*n)).  The signal repeats itself every 4 sec so that y[n] = y[n+4].
+
The plot on the left shows the same signal but in DT (y[n] = sin(n)).  The sampling frequency is at <math>\pi/2</math> (y[n] = sin(<math>(\pi/2)</math>*n)).  The signal repeats itself every 4 sec so that y[n] = y[n+4].  No = k * <math>\frac{2\pi}{\pi/2}</math>  ==>  No = k * 4  so that the signal repeats itself every 4 seconds.
  
 
[[Image:sahw1a1_ECE301Fall2008mboutin.jpg]]  [[Image:sahw1a3_ECE301Fall2008mboutin.jpg]]
 
[[Image:sahw1a1_ECE301Fall2008mboutin.jpg]]  [[Image:sahw1a3_ECE301Fall2008mboutin.jpg]]

Revision as of 17:05, 10 September 2008

Part A

The original signal shown in the first plot is y(t) = sin(t) with a period of $ 2\pi $

Sahw1a2 ECE301Fall2008mboutin.jpg

The plot on the left shows the same signal but in DT (y[n] = sin(n)). The sampling frequency is at $ \pi/2 $ (y[n] = sin($ (\pi/2) $*n)). The signal repeats itself every 4 sec so that y[n] = y[n+4]. No = k * $ \frac{2\pi}{\pi/2} $ ==> No = k * 4 so that the signal repeats itself every 4 seconds.

Sahw1a1 ECE301Fall2008mboutin.jpg Sahw1a3 ECE301Fall2008mboutin.jpg

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva