Line 2: | Line 2: | ||
<math>E = \int_{t_1}^{t_2}\!|x(t)|^2dt</math> | <math>E = \int_{t_1}^{t_2}\!|x(t)|^2dt</math> | ||
+ | |||
+ | |||
---- | ---- | ||
==Signal Energy Example== | ==Signal Energy Example== | ||
Line 17: | Line 19: | ||
== Power == | == Power == | ||
<math>P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt</math> | <math>P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt</math> | ||
+ | |||
+ | |||
---- | ---- | ||
==Power Example== | ==Power Example== |
Latest revision as of 17:35, 5 September 2008
Signal Energy
$ E = \int_{t_1}^{t_2}\!|x(t)|^2dt $
Signal Energy Example
$ E = \int_{0}^{4\pi}\!|sin(t)|^2dt $
$ E = \int_{0}^{4\pi}\!(\frac{1-cos(2t)}{2})dt $
$ E = 2 \pi - \frac{1}{4}\sin(8\pi) $
$ E = 2\pi $
Power
$ P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt $
Power Example
$ P={1\over(4\pi-0)}\int_{0}^{4\pi}\!|sin(t)|^2dt $
$ P={1\over(4\pi-0)}\int_{0}^{4\pi}\!(\frac{1-cos(2t)}{2})dt $
$ P=\frac{1}{2}-\frac{1}{16\pi}sin(8\pi) $
$ P=\frac{1}{2} $