Line 2: Line 2:
  
 
<math>E = \int_{t_1}^{t_2}\!|x(t)|^2dt</math>
 
<math>E = \int_{t_1}^{t_2}\!|x(t)|^2dt</math>
 +
 +
 
----
 
----
 
==Signal Energy Example==
 
==Signal Energy Example==
Line 17: Line 19:
 
== Power ==
 
== Power ==
 
<math>P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt</math>
 
<math>P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt</math>
 +
 +
 
----
 
----
 
==Power Example==
 
==Power Example==

Latest revision as of 17:35, 5 September 2008

Signal Energy

$ E = \int_{t_1}^{t_2}\!|x(t)|^2dt $



Signal Energy Example

$ E = \int_{0}^{4\pi}\!|sin(t)|^2dt $

$ E = \int_{0}^{4\pi}\!(\frac{1-cos(2t)}{2})dt $

$ E = 2 \pi - \frac{1}{4}\sin(8\pi) $

$ E = 2\pi $



Power

$ P={1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2dt $



Power Example

$ P={1\over(4\pi-0)}\int_{0}^{4\pi}\!|sin(t)|^2dt $

$ P={1\over(4\pi-0)}\int_{0}^{4\pi}\!(\frac{1-cos(2t)}{2})dt $

$ P=\frac{1}{2}-\frac{1}{16\pi}sin(8\pi) $

$ P=\frac{1}{2} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang