(New page: == Energy == <math>E = \int_{t1}^{t2}{|x(t))|^2dt}</math> ==Usint this result let us consider an example,== <math>= \int_{0}^{2 \pi}{|cos(t)|^2dt}</math> <math>=\int_{0}^{2\pi}\frac(1+c...) |
(→Usint this result let us consider an example,) |
||
Line 6: | Line 6: | ||
<math>= \int_{0}^{2 \pi}{|cos(t)|^2dt}</math> | <math>= \int_{0}^{2 \pi}{|cos(t)|^2dt}</math> | ||
− | <math>=\int_{0}^{2\pi}\frac | + | <math>= \int_{0}^{2 \pi}\frac{1 + cos(2t)}{2}dt</math> |
− | <math>=\frac{2\pi}{2}+\frac | + | |
− | <math>=\{ | + | <math>=\frac{2 \pi}{2} + \frac{1}{4} sin(4 \pi)</math> |
+ | |||
+ | <math>=\frac{2 \pi}{2} </math> | ||
== Power == | == Power == |
Latest revision as of 13:08, 5 September 2008
Energy
$ E = \int_{t1}^{t2}{|x(t))|^2dt} $
Usint this result let us consider an example,
$ = \int_{0}^{2 \pi}{|cos(t)|^2dt} $
$ = \int_{0}^{2 \pi}\frac{1 + cos(2t)}{2}dt $
$ =\frac{2 \pi}{2} + \frac{1}{4} sin(4 \pi) $
$ =\frac{2 \pi}{2} $
Power
$ P = \frac{1}{2 \pi - 0} \int_{0}^{2 \pi}{|cos(t)|^2dt} $
$ = \frac{1}{2 \pi} \int_{0}^{2 \pi}\frac{[1 + cos(2t)]}{2}dt $
$ =\frac{1}{2} $