(New page: == Energy and Power == The energy and power of a signal can be found through the use of basic calculus. Energy, E: <math> = \int_{t1}^{t2} y(t) </math> For the signal y(t) from 0 to 10...) |
(→Energy and Power) |
||
Line 5: | Line 5: | ||
Energy, E: <math> = \int_{t1}^{t2} y(t) </math> | Energy, E: <math> = \int_{t1}^{t2} y(t) </math> | ||
− | For the signal y(t) from 0 to 10 seconds | + | For the signal y(t) from 0 to 10 seconds, with y = <math>7x^3</math> |
+ | |||
E = <math> \int_{0}^{10} 7x^3 </math> | E = <math> \int_{0}^{10} 7x^3 </math> | ||
Line 11: | Line 12: | ||
E <math> = (\frac{7}{3} * 10^4) - (\frac{7}{3} *0)</math> | E <math> = (\frac{7}{3} * 10^4) - (\frac{7}{3} *0)</math> | ||
+ | |||
+ | Power, P: <math> = \frac{1}{t2-t1}\int_{t1}^{t2} y(t) </math> | ||
+ | |||
+ | P = <math> \frac{1}{10-0}\int_{0}^{10} y(t) </math> | ||
+ | |||
+ | P = <math> \frac {1}{10} * \frac{7}{3} * 10^4 </math> |
Latest revision as of 11:42, 5 September 2008
Energy and Power
The energy and power of a signal can be found through the use of basic calculus.
Energy, E: $ = \int_{t1}^{t2} y(t) $
For the signal y(t) from 0 to 10 seconds, with y = $ 7x^3 $
E = $ \int_{0}^{10} 7x^3 $
E = $ = \frac{7}{3}[x^{4}]_{t=0}^{t=10} \! $
E $ = (\frac{7}{3} * 10^4) - (\frac{7}{3} *0) $
Power, P: $ = \frac{1}{t2-t1}\int_{t1}^{t2} y(t) $
P = $ \frac{1}{10-0}\int_{0}^{10} y(t) $
P = $ \frac {1}{10} * \frac{7}{3} * 10^4 $