(New page: '''Peridic and Non Periodic Signals''' ''Defination :'' -if x(t)=x(t+T) for all values of t ,for some T not equal to zero,then x(t) is periodic with period T. -if x(n)=x(n+N) for all va...)
 
Line 1: Line 1:
 
'''Peridic and Non Periodic Signals'''
 
'''Peridic and Non Periodic Signals'''
 +
  
 
''Defination :''
 
''Defination :''
 +
  
 
-if x(t)=x(t+T) for all values of t ,for some T not equal to zero,then x(t) is periodic with period T.
 
-if x(t)=x(t+T) for all values of t ,for some T not equal to zero,then x(t) is periodic with period T.
  
 
-if x(n)=x(n+N) for all values of n ,some integer N ,then x(n) is periodic with period N.
 
-if x(n)=x(n+N) for all values of n ,some integer N ,then x(n) is periodic with period N.
 +
 +
  
  
 
Example of a periodic signal
 
Example of a periodic signal
  
: x[n]=j^n is periodic and fundamental period N=4
+
Q) Is x[n]=j^n periodic ?
 +
Ans)
 +
 
 +
fundamental period of signal N=4
  
 
x[1] = j
 
x[1] = j
Line 22: Line 29:
  
 
period =4,8,16 ,all mulitples of 4.
 
period =4,8,16 ,all mulitples of 4.
 +
 +
Therefore it is a periodic signal
 +
 +
  
 
Example of a non periodic signal.
 
Example of a non periodic signal.

Revision as of 07:36, 5 September 2008

Peridic and Non Periodic Signals


Defination :


-if x(t)=x(t+T) for all values of t ,for some T not equal to zero,then x(t) is periodic with period T.

-if x(n)=x(n+N) for all values of n ,some integer N ,then x(n) is periodic with period N.



Example of a periodic signal

Q) Is x[n]=j^n periodic ? Ans)

fundamental period of signal N=4

x[1] = j x[2] = -1 x[3] = -j x[4] = 1 x[5] = j x[6] = -1 x[7] = -j x[8] = 1

period =4,8,16 ,all mulitples of 4.

Therefore it is a periodic signal


Example of a non periodic signal.

q) Is cos(n) a periodic signal ?

we want a integer N such that

cos (n+N) = cos (n) for all n

N is a multiple of 2*pi but since no integer multiple of 2*pi is an integer Therefore cos (n) is not periodic.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett