(→In Two Events) |
(→In Two Events) |
||
Line 9: | Line 9: | ||
<math> P( \lbrace C_1=H \rbrace \bigcap \lbrace C_2 =H \rbrace )</math> | <math> P( \lbrace C_1=H \rbrace \bigcap \lbrace C_2 =H \rbrace )</math> | ||
− | <math> P( C_1=H ) | + | <math> P( C_1=H ) \times P(C_2=H)</math> |
[http://en.wikipedia.org/wiki/Help:Formula] | [http://en.wikipedia.org/wiki/Help:Formula] |
Revision as of 10:17, 8 September 2008
Independence
In Two Events
$ P(A \bigcap B) = P(A) \times P(B) $
For example, given a coin, are the two outcomes independent?
$ P( \lbrace C_1=H \rbrace \bigcap \lbrace C_2 =H \rbrace ) $
$ P( C_1=H ) \times P(C_2=H) $
In Multiple Events
$ \bigcap_i A_i = \prod_i P(A_i) $
For i $ \in $ S
Conditional Probability
A & B are conditionally independent given C if the following formula holds true.
$ P(A \bigcap B|C) = P(A|C) \times P(B|C) $