(In Multiple Events)
(In Two Events)
Line 8: Line 8:
  
 
<math> P( \lbrace C_1=H \rbrace  \bigcap  \lbrace C_2 =H \rbrace  )</math>
 
<math> P( \lbrace C_1=H \rbrace  \bigcap  \lbrace C_2 =H \rbrace  )</math>
 +
 +
<math> P( C_1=H ) /times P(C_2=H)</math>
  
 
[http://en.wikipedia.org/wiki/Help:Formula]
 
[http://en.wikipedia.org/wiki/Help:Formula]

Revision as of 10:17, 8 September 2008

Independence

In Two Events

$ P(A \bigcap B) = P(A) \times P(B) $

For example, given a coin, are the two outcomes independent?

$ P( \lbrace C_1=H \rbrace \bigcap \lbrace C_2 =H \rbrace ) $

$ P( C_1=H ) /times P(C_2=H) $

[1]

In Multiple Events

$ \bigcap_i A_i = \prod_i P(A_i) $

For i $ \in $ S

Conditional Probability

A & B are conditionally independent given C if the following formula holds true.

$ P(A \bigcap B|C) = P(A|C) \times P(B|C) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin