Line 3: Line 3:
 
<math>x(t) = sin(t)</math>
 
<math>x(t) = sin(t)</math>
  
Clearly, <math>x(t)</math> is periodic because there is a <math>T > 0</math> such that <math>x(t + T) = x(t)</math> for all <math>t</math>. An obvious example for <math>t</math> would be <math>t = 2\pi</math>. Shifting <math>x(t)</math> by <math>2\pi</math> gives the original function since <math>2\pi</math> is the ''fundamental period'' of <math>x(t) = sin(t)</math>
+
Clearly, <math>x(t)</math> is periodic because there is a <math>T > 0</math> such that <math>x(t + T) = x(t)</math> for all <math>t</math>. An obvious choice for <math>T</math> would be <math>T = 2\pi</math>. Shifting <math>x(t)</math> by <math>2\pi</math> gives the original function since <math>2\pi</math> is the ''fundamental period'' of <math>x(t) = sin(t)</math>

Revision as of 20:16, 4 September 2008

A Periodic Function

$ x(t) = sin(t) $

Clearly, $ x(t) $ is periodic because there is a $ T > 0 $ such that $ x(t + T) = x(t) $ for all $ t $. An obvious choice for $ T $ would be $ T = 2\pi $. Shifting $ x(t) $ by $ 2\pi $ gives the original function since $ 2\pi $ is the fundamental period of $ x(t) = sin(t) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett