Line 14: | Line 14: | ||
<math>x(t) = e^{j(\pi t-1)}</math> | <math>x(t) = e^{j(\pi t-1)}</math> | ||
− | <math>P_\infty</math> | + | <math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt)</math> |
<math>E_\infty</math> | <math>E_\infty</math> |
Revision as of 20:20, 4 September 2008
Power and Energy Problem
$ x(t) = 3\cos(4t + \frac{\pi}{3}) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |3\cos(4t + \frac{\pi}{3})|^2\,dt) $
$ E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt $
- Bonus Problem!
$ x(t) = e^{j(\pi t-1)} $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt) $
$ E_\infty $