Line 10: | Line 10: | ||
For starters, define a group G. Referring back to field extensions, if there exists an extension F of Q, then there exists a grouping of automorphisms of Q onto F. Let the group G be the container of these automorphisms. In general, this basic definition is referred to as the Galois group of the field extension. However, if the field F is actually the splitting field of a polynomial, then it can be called the Galois group of that polynomial. | For starters, define a group G. Referring back to field extensions, if there exists an extension F of Q, then there exists a grouping of automorphisms of Q onto F. Let the group G be the container of these automorphisms. In general, this basic definition is referred to as the Galois group of the field extension. However, if the field F is actually the splitting field of a polynomial, then it can be called the Galois group of that polynomial. | ||
− | If the Galois group is a grouping of automorphisms of a field, then how can one know it is a group? What is its operation? A Galois group makes use of function composition as its operation, | + | If the Galois group is a grouping of automorphisms of a field, then how can one know it is a group? What is its operation? A Galois group makes use of function composition as its operation, f * g, where f and g are members of the Galois group. |
+ | [[File:GaloisGroupVisualized.png|500 px|thumbnail|Figure 4.1: The Galois group visualized. This was constructed from taking the quadratic Galois Group of ax^2 + bx + c and coloring the pixels (b,c) yellow if the Galois Group of the polynomial is the trivial group A2]] | ||
So, what's the purpose of such an abstractly defined structure? The answer to this question involves what a Galois group is capable of doing. For instance, if a Galois group is found for a polynomial p(x), and one proves that this Galois group is soluble, then the polynomial has radical roots. | So, what's the purpose of such an abstractly defined structure? The answer to this question involves what a Galois group is capable of doing. For instance, if a Galois group is found for a polynomial p(x), and one proves that this Galois group is soluble, then the polynomial has radical roots. | ||
+ | |||
[[ Walther MA271 Fall2020 topic1|Back to Walther MA271 Fall2020 topic1]] | [[ Walther MA271 Fall2020 topic1|Back to Walther MA271 Fall2020 topic1]] | ||
[[Category:MA271Fall2020Walther]] | [[Category:MA271Fall2020Walther]] |
Revision as of 14:21, 6 December 2020
Main Discussion
Galois Group
Now that groups and fields have been described, it is time to define the Galois group.
For starters, define a group G. Referring back to field extensions, if there exists an extension F of Q, then there exists a grouping of automorphisms of Q onto F. Let the group G be the container of these automorphisms. In general, this basic definition is referred to as the Galois group of the field extension. However, if the field F is actually the splitting field of a polynomial, then it can be called the Galois group of that polynomial.
If the Galois group is a grouping of automorphisms of a field, then how can one know it is a group? What is its operation? A Galois group makes use of function composition as its operation, f * g, where f and g are members of the Galois group.
So, what's the purpose of such an abstractly defined structure? The answer to this question involves what a Galois group is capable of doing. For instance, if a Galois group is found for a polynomial p(x), and one proves that this Galois group is soluble, then the polynomial has radical roots.