Line 12: | Line 12: | ||
\frac{\partial}{\partial y} \\ | \frac{\partial}{\partial y} \\ | ||
\frac{\partial}{\partial z} | \frac{\partial}{\partial z} | ||
− | \end{array}\right] | + | \end{array}\right] will of course be |
Revision as of 14:17, 6 December 2020
Coordinate Conversions for the Laplace Operator
It is most common to use the Laplace Operator $ \Delta $ in three-dimensions, as that is the dimensionality of our physical universe. Thus, the Laplace Operator is often used in 3-D Cartesian coordinates, cylindrical coordinates, and spherical coordinates.
$ \Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}\ $
The basis for this conversion is, in the opinion of the authors, quite clear. The dot product of the vectors: $ \nabla f = \Bigg[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},\frac{\partial f}{\partial z}\Bigg] $ and $ \left[\begin{array}{l} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] will of course be $