Line 2: | Line 2: | ||
==Coordinate Conversions for the Laplace Operator== | ==Coordinate Conversions for the Laplace Operator== | ||
− | It is most common to use the Laplace Operator <math>\Delta<math> in three-dimensions, as that is the dimensionality of our physical universe. Thus, the Laplace Operator is often used in 3-D Cartesian coordinates, cylindrical coordinates, and spherical coordinates. | + | It is most common to use the Laplace Operator <math>\Delta<\math> in three-dimensions, as that is the dimensionality of our physical universe. Thus, the Laplace Operator is often used in 3-D Cartesian coordinates, cylindrical coordinates, and spherical coordinates. |
<math> | <math> | ||
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}\ | \Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}\ | ||
<\math> | <\math> |
Revision as of 14:04, 6 December 2020
Coordinate Conversions for the Laplace Operator
It is most common to use the Laplace Operator $ \Delta<\math> in three-dimensions, as that is the dimensionality of our physical universe. Thus, the Laplace Operator is often used in 3-D Cartesian coordinates, cylindrical coordinates, and spherical coordinates. <math> \Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}\ <\math> $