Line 2: | Line 2: | ||
Author: Ryan Walter | Author: Ryan Walter | ||
+ | |||
Table of Contents: | Table of Contents: | ||
Line 16: | Line 17: | ||
5. Sources | 5. Sources | ||
+ | |||
Introduction: | Introduction: | ||
Hilbert's Nullstellensatz is a relationship between algebra and geometry that was discovered by David Hilbert in 1900. Nullstellensatz is a German word that translates roughly to “Theorem of Zeros” or more precisely, “Zero Locus Theorem.” The Nullstellensatz is a foundational theorem that greatly advanced the study of algebraic geometry by proving a strong connection between geometry and a branch of algebra called commutative algebra. Both the Nullstellensatz and commutative algebra focus heavily on ‘rings,’ which will be defined in the vocabulary section. | Hilbert's Nullstellensatz is a relationship between algebra and geometry that was discovered by David Hilbert in 1900. Nullstellensatz is a German word that translates roughly to “Theorem of Zeros” or more precisely, “Zero Locus Theorem.” The Nullstellensatz is a foundational theorem that greatly advanced the study of algebraic geometry by proving a strong connection between geometry and a branch of algebra called commutative algebra. Both the Nullstellensatz and commutative algebra focus heavily on ‘rings,’ which will be defined in the vocabulary section. | ||
+ | |||
Vocab: | Vocab: |
Revision as of 16:06, 29 November 2020
Hilbert’s Nullstellensatz: Proofs and Applications
Author: Ryan Walter
Table of Contents:
1. Introduction
2. Vocab
3. Theorem
a. Weak b. Strong
4. Applications
5. Sources
Introduction:
Hilbert's Nullstellensatz is a relationship between algebra and geometry that was discovered by David Hilbert in 1900. Nullstellensatz is a German word that translates roughly to “Theorem of Zeros” or more precisely, “Zero Locus Theorem.” The Nullstellensatz is a foundational theorem that greatly advanced the study of algebraic geometry by proving a strong connection between geometry and a branch of algebra called commutative algebra. Both the Nullstellensatz and commutative algebra focus heavily on ‘rings,’ which will be defined in the vocabulary section.
Vocab:
Theorem:
Applications:
Sources: