Line 2: Line 2:
  
 
Author: Ryan Walter
 
Author: Ryan Walter
 +
  
 
Table of Contents:
 
Table of Contents:
Line 16: Line 17:
  
 
5. Sources
 
5. Sources
 +
  
 
Introduction:
 
Introduction:
  
 
Hilbert's Nullstellensatz is a relationship between algebra and geometry that was discovered by David Hilbert in 1900. Nullstellensatz is a German word that translates roughly to “Theorem of Zeros” or more precisely, “Zero Locus Theorem.” The Nullstellensatz is a foundational theorem that greatly advanced the study of algebraic geometry by proving a strong connection between geometry and a branch of algebra called commutative algebra. Both the Nullstellensatz and commutative algebra focus heavily on ‘rings,’ which will be defined in the vocabulary section.   
 
Hilbert's Nullstellensatz is a relationship between algebra and geometry that was discovered by David Hilbert in 1900. Nullstellensatz is a German word that translates roughly to “Theorem of Zeros” or more precisely, “Zero Locus Theorem.” The Nullstellensatz is a foundational theorem that greatly advanced the study of algebraic geometry by proving a strong connection between geometry and a branch of algebra called commutative algebra. Both the Nullstellensatz and commutative algebra focus heavily on ‘rings,’ which will be defined in the vocabulary section.   
 +
  
 
Vocab:
 
Vocab:

Revision as of 16:06, 29 November 2020

Hilbert’s Nullstellensatz: Proofs and Applications

Author: Ryan Walter


Table of Contents:

1. Introduction

2. Vocab

3. Theorem

     a. Weak
     b. Strong

4. Applications

5. Sources


Introduction:

Hilbert's Nullstellensatz is a relationship between algebra and geometry that was discovered by David Hilbert in 1900. Nullstellensatz is a German word that translates roughly to “Theorem of Zeros” or more precisely, “Zero Locus Theorem.” The Nullstellensatz is a foundational theorem that greatly advanced the study of algebraic geometry by proving a strong connection between geometry and a branch of algebra called commutative algebra. Both the Nullstellensatz and commutative algebra focus heavily on ‘rings,’ which will be defined in the vocabulary section.


Vocab:

Theorem:

Applications:

Sources:

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva