Line 4: | Line 4: | ||
<center><math> \int_{0}^{\infty}(e^{-x^2}*cos(2x)) dx</math></center> | <center><math> \int_{0}^{\infty}(e^{-x^2}*cos(2x)) dx</math></center> | ||
As we can see, there isn't any particular place that we can use u-substitution or integration by parts to produce a solution easily, but Feynman shows us how we can parameterize the variables for the cosine factor of the integrand to extract an x, making the left portion of the integrand <math>x*e^{-x^2}</math>, which is much easier to deal with than just <math>e^{-x^2}</math> | As we can see, there isn't any particular place that we can use u-substitution or integration by parts to produce a solution easily, but Feynman shows us how we can parameterize the variables for the cosine factor of the integrand to extract an x, making the left portion of the integrand <math>x*e^{-x^2}</math>, which is much easier to deal with than just <math>e^{-x^2}</math> | ||
+ | |||
[[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]] | [[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]] |
Revision as of 17:28, 27 November 2020
What is Feynman's Technique?
Feynman's Technique of integration utilizes parametrization and a mix of other different mathematical properties in order to integrate an integral that is can't be integrated through normal processes like u-substitution or integration by parts. It primarily focuses on setting a function equal to an integral, and then differentiating the function to get an integral that is easier to work with. A simple example would be an integral such as:
As we can see, there isn't any particular place that we can use u-substitution or integration by parts to produce a solution easily, but Feynman shows us how we can parameterize the variables for the cosine factor of the integrand to extract an x, making the left portion of the integrand $ x*e^{-x^2} $, which is much easier to deal with than just $ e^{-x^2} $