Line 29: Line 29:
 
e) <math> s(s+1)+2s+4 = 0 \Rightarrow s^2+3s+4=0 </math>
 
e) <math> s(s+1)+2s+4 = 0 \Rightarrow s^2+3s+4=0 </math>
 
   <math> \therefore \omega_n^2 =4, \; 2\zeta \omega_n = 3 \Rightarrow \tau = \frac{1}{\zeta \omega_n} = \frac{3}{2}</math>
 
   <math> \therefore \omega_n^2 =4, \; 2\zeta \omega_n = 3 \Rightarrow \tau = \frac{1}{\zeta \omega_n} = \frac{3}{2}</math>
 +
 +
f) <math> \frac{3}{4}</math>
 +
 +
g) since <math>\zeta > 0  \therefore \omega_n = 2

Revision as of 21:46, 1 August 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 1: Feedback Control Systems

August 2017 (Published in Jul 2019)

Problem 1

a) $ \frac{C(s)}{R(s)} = \frac{4}{s(s+1)} $

b) $ \frac{B(s)}{E(s)} = \frac{2}{s+1}+\frac{4}{s(s+1)} = \frac{2s+4}{s(s+1)} $

c) $ \frac{C(s)}{R(s)} = \frac{\frac{4}{s(s+1)}}{1+\frac{2s+4}{s(s+1)}} $

d) $ 1+\frac{2s+4}{s(s+1)} = 0 $

e) $ s(s+1)+2s+4 = 0 \Rightarrow s^2+3s+4=0 $

  $  \therefore \omega_n^2 =4, \; 2\zeta \omega_n = 3 \Rightarrow \tau = \frac{1}{\zeta \omega_n} = \frac{3}{2} $

f) $ \frac{3}{4} $

g) since $ \zeta > 0 \therefore \omega_n = 2 $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal