m
Line 39: Line 39:
 
<math>
 
<math>
 
\lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt}
 
\lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt}
 +
</math>
 +
</center>
 
\hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d}
 
\hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d}
 
</math>
 
</math>

Revision as of 00:11, 7 July 2019


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published on Jul 2019)

Problem 1

  1. Calculate an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current.

$ \lambda_n^c=\lambda_n^b-\lambda_n^d $

  1. Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence.

$ G_n=-\mu(x,y_0+n*\Delta d)\lambda_n $

  1. Calculate an expression for $ \hat{P}_n $, an estimate of the integral intensity in terms of $ \lambda_n $, $ \lambda_n^b $, and $ \lambda_b^d $.

$ \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} $

\hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} </math> </center>

  1. For this part, assume that the object is of constant density with $ \mu(x,y)=\mu_0 $. Then sketch a plot of $ \hat{P}_n $ versus the object thickness, $ T_n $, in $ mm $, for the $ n^{th} $ detector. Label key features of the curve such as its slope and intersection.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett