m |
|||
Line 39: | Line 39: | ||
<math> | <math> | ||
\lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} | \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} | ||
+ | </math> | ||
+ | </center> | ||
\hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} | \hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} | ||
</math> | </math> |
Revision as of 00:11, 7 July 2019
Communication, Networking, Signal and Image Processing (CS)
Question 5: Image Processing
August 2016 (Published on Jul 2019)
Problem 1
- Calculate an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current.
$ \lambda_n^c=\lambda_n^b-\lambda_n^d $
- Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence.
$ G_n=-\mu(x,y_0+n*\Delta d)\lambda_n $
- Calculate an expression for $ \hat{P}_n $, an estimate of the integral intensity in terms of $ \lambda_n $, $ \lambda_n^b $, and $ \lambda_b^d $.
$ \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} $
\hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} </math> </center>
- For this part, assume that the object is of constant density with $ \mu(x,y)=\mu_0 $. Then sketch a plot of $ \hat{P}_n $ versus the object thickness, $ T_n $, in $ mm $, for the $ n^{th} $ detector. Label key features of the curve such as its slope and intersection.