m
Line 34: Line 34:
 
</center>
 
</center>
  
# Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\lmabda_b^d</math>.
+
# Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\lambda_b^d</math>.
 +
 
 +
<center>
 +
<math>
 +
\lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt}
 +
\hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d}
 +
</math>
 +
</center>

Revision as of 23:32, 6 July 2019


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published on Jul 2019)

Problem 1

  1. Calculate an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current.

$ \lambda_n^c=\lambda_n^b-\lambda_n^d $

  1. Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence.

$ G_n=-\mu(x,y_0+n*\Delta d)\lambda_n $

  1. Calculate an expression for $ \hat{P}_n $, an estimate of the integral intensity in terms of $ \lambda_n $, $ \lambda_n^b $, and $ \lambda_b^d $.

$ \lambda_n=(\lambda_n^b-\lambda_n^d)e^{-\int_0^x \mu(t)dt} \hat{P}_n=\int_0^x \mu(t)dt=-log\frac{\lambda_n}{\lambda_n^b-\lambda_n^d} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch