m
Line 28: Line 28:
 
# Calculate an expression for <math>G_n</math>, the X-ray attenuation due to the object's presence.
 
# Calculate an expression for <math>G_n</math>, the X-ray attenuation due to the object's presence.
  
# Calculate an expression for <math>\hat{P}_n</math>
+
<center>
 +
<math>
 +
G_n=-\mu(x,y_0+n*\Delta d)\lambda_n
 +
</math>
 +
</center>
 +
 
 +
# Calculate an expression for <math>\hat{P}_n</math>, an estimate of the integral intensity in terms of <math>\lambda_n</math>, <math>\lambda_n^b</math>, and <math>\lmabda_b^d</math>.

Revision as of 23:29, 6 July 2019


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2016 (Published on Jul 2019)

Problem 1

  1. Calculate an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current.

$ \lambda_n^c=\lambda_n^b-\lambda_n^d $

  1. Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence.

$ G_n=-\mu(x,y_0+n*\Delta d)\lambda_n $

  1. Calculate an expression for $ \hat{P}_n $, an estimate of the integral intensity in terms of $ \lambda_n $, $ \lambda_n^b $, and $ \lmabda_b^d $.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal