Line 24: Line 24:
 
& = \int_a^{-\infty} jzdhfbvzjhvz dt \\
 
& = \int_a^{-\infty} jzdhfbvzjhvz dt \\
 
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg
 
& = \sum_{k=0}^{-\infty} kzdjfgdzjkfg
x(t) = sin(6 \pi t), \omega_{\not}
+
& = x(t) = sin(6 \pi t), \omega_{o} = 6\pi
 +
& = x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi
 +
 
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Revision as of 19:36, 25 April 2019


Fourier Series Coefficients

A project by Kalyan Mada



Introduction

I am going to compute some fourier series coefficients.


CT signals

$ \begin{align} \bar f(x) &= \oint_S g(x) dx \\ &= \int_a^b g(x) dx \\ &= \frac{\mu_0}{2 \pi a \cdot b}\\ & = \int_a^{-\infty} jzdhfbvzjhvz dt \\ & = \sum_{k=0}^{-\infty} kzdjfgdzjkfg & = x(t) = sin(6 \pi t), \omega_{o} = 6\pi & = x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi \end{align} $


DT signals



Questions and comments

If you have any questions, comments, etc. please post them here.


[to 2019 Spring ECE 301 Boutin]


Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010