(ECE580_AC3_2017_5question_rm_part)
(finish_ac3_2017_1)
 
Line 31: Line 31:
 
<center> <math> x_{1} \geq 0 </math>, <math> x_{2} \geq 0 </math>. </center> <br/>
 
<center> <math> x_{1} \geq 0 </math>, <math> x_{2} \geq 0 </math>. </center> <br/>
 
Convert the above linear program into standard form and find an initial basic feasible solution for the program in standard form. <br/>
 
Convert the above linear program into standard form and find an initial basic feasible solution for the program in standard form. <br/>
 +
 +
Solution of question1: <br/>
 +
The problem equal to:<br/>
 +
Minimize <math>2x_1+x_2</math><br>
 +
Subject to <math>\begin{align*}
 +
&x_1+3x_2-x_3=6\\
 +
&2x_1+x_2-x_4=4\\
 +
&x_1+x_2+x_5=3\\
 +
&x_1, x_2, x_3, x_4,x_5 >=0
 +
\end{align*}</math><br>
 +
such that <math>A=
 +
\begin{bmatrix}
 +
1 & 3 & -1 & 0 & 0 \\
 +
2 & 1 & 0 & -1 & 0 \\
 +
1 & 1 & 0 & 0 & 1
 +
\end{bmatrix}
 +
</math><br>
 +
we take <math>B=
 +
\begin{bmatrix}
 +
1 & 3 & 0 \\
 +
2 & 1 & 0 \\
 +
1 & 1 & 1
 +
\end{bmatrix} \Rightarrow
 +
B\begin{bmatrix}
 +
x_1 \\
 +
x_2 \\
 +
x_3
 +
\end{bmatrix}
 +
=b \Rightarrow \begin{bmatrix}
 +
x_1 \\
 +
x_2 \\
 +
x_3
 +
\end{bmatrix}
 +
=
 +
\begin{bmatrix}
 +
1 & 3 & 0 \\
 +
2 & 1 & 0 \\
 +
1 & 1 & 1
 +
\end{bmatrix}^{-1}
 +
\begin{bmatrix}
 +
6\\
 +
4\\
 +
3
 +
\end{bmatrix}
 +
=
 +
\begin{bmatrix}
 +
\dfrac{6}{5} \\
 +
\dfrac{8}{5} \\
 +
\dfrac{1}{5}
 +
\end{bmatrix}
 +
</math><br>
 +
Such that <math>x^T=[\dfrac{6}{5}, \dfrac{8}{5},\dfrac{1}{5}, 0, 0]</math> is a feasible solution.
 +
 +
  
 
----
 
----
Line 40: Line 94:
 
<center><math> f= 6x_{1}^{2}+2x_{2}^{2}-5 </math></center> <br/>
 
<center><math> f= 6x_{1}^{2}+2x_{2}^{2}-5 </math></center> <br/>
 
starting from an arbitrary initial condition <math>x^{(0)} \in \mathbb{R}^{n}</math>
 
starting from an arbitrary initial condition <math>x^{(0)} \in \mathbb{R}^{n}</math>
 +
 +
Solution of question 2: <br/>
 +
a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3<br>
 +
For fixed step gradient descent algorithms <math>\alpha</math> should in the range <math>(0,\dfrac{2}{\lambda max(Q)})</math><br>
 +
b) <math>Q=\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix}</math><br>
 +
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>
  
  
Line 47: Line 107:
 
locally convex, concave, or neither in the neighborhood of the point <math> [2 -1]^{T} </math>? Justify your answer by giving all the details of your argument.
 
locally convex, concave, or neither in the neighborhood of the point <math> [2 -1]^{T} </math>? Justify your answer by giving all the details of your argument.
  
 +
Solution of question3: <br/>
 +
Let <math>t_1=x_1-2 </math>, <math>t_2=x_2+1</math><br>
 +
so that <math>g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0</math> would have some convex property<br>
 +
with <math>f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1</math><br>
 +
<math>D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math><br>
 +
It is easy to see that <math>\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math> is n.d .<br>
 +
Such that function at <math>[2 -1]^T</math> is strictly locally concave.<br>
  
 
----
 
----
Line 53: Line 120:
 
<center>subject to <math> x_{1}+x_{2}+x_{3}=1 </math> </center><br>
 
<center>subject to <math> x_{1}+x_{2}+x_{3}=1 </math> </center><br>
 
<center><math> x_{1}+x_{2}-x_{3}=0 </math></center><br>
 
<center><math> x_{1}+x_{2}-x_{3}=0 </math></center><br>
 +
 +
Solution of question4: <br/>
 +
We form the lagrangian:<br>
 +
<math>l(x,\lambda)=x_1x_2+\lambda_1(x_1+x_2+x_3-1)+\lambda_2(x_1+x_2-x_3)</math><br>
 +
<math>\begin{cases}
 +
\nabla_xl=\begin{bmatrix} x_2+\lambda_1+\lambda_2 \\ x_1+\lambda_1+\lambda_2 \\ \lambda_1+\lambda_2\end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\
 +
x_1+x_2+x_3-1=0 \\
 +
x_1+x_2-x_3=0
 +
\end{cases}
 +
</math><br>
 +
No valid solution for lagrangian condition <br>
 +
Such that the problem can not be optimized<br>
  
 
----
 
----
Line 59: Line 138:
 
<center>subject to <math>x_{1}+x_{2} \leq 2</math></center><br>
 
<center>subject to <math>x_{1}+x_{2} \leq 2</math></center><br>
 
<center><math> x_{1}+2x_{2} \leq 3 </math></center>
 
<center><math> x_{1}+2x_{2} \leq 3 </math></center>
 +
 +
Solution of question 5: <br/>
 +
The problem equal to<br>
 +
Minimize <math>(x_1)^2+(x_2)^2-14x_1-6x_2-7</math><br>
 +
Subject to <math>x_1+x_2-2<=0</math> and <math>x_1+2x_2-3<=0</math><br>
 +
Form the lagrangian function<br>
 +
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>
 +
The KKT condition takes the form<br>
 +
<math>\nabla_xl(x,\mu)=\begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix}</math><br>
 +
<math>\mu_1(x_1+x_2-2)=0</math><br>
 +
<math>\mu_2(x_1+2x_2-3)=0</math><br>
 +
<math>\mu_1>=0</math>, <math>\mu_2>=0</math><br>
 +
<math> \Rightarrow
 +
\begin{cases}
 +
\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\
 +
\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\
 +
\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
 +
\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong
 +
\end{cases}</math><br>
 +
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
  
 
----
 
----

Latest revision as of 00:04, 24 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2017




1.(20 pts) Considern the following linear program,

minimize $ 2x_{1} + x_{2} $,

subject to $ x_{1} + 3x_{2} \geq 6 $

$ 2x_{1} + x_{2} \geq 4 $

$ x_{1} + x_{2} \leq 3 $

$ x_{1} \geq 0 $, $ x_{2} \geq 0 $.

Convert the above linear program into standard form and find an initial basic feasible solution for the program in standard form.

Solution of question1:
The problem equal to:
Minimize $ 2x_1+x_2 $
Subject to $ \begin{align*} &x_1+3x_2-x_3=6\\ &2x_1+x_2-x_4=4\\ &x_1+x_2+x_5=3\\ &x_1, x_2, x_3, x_4,x_5 >=0 \end{align*} $
such that $ A= \begin{bmatrix} 1 & 3 & -1 & 0 & 0 \\ 2 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} $
we take $ B= \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow B\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =b \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6\\ 4\\ 3 \end{bmatrix} = \begin{bmatrix} \dfrac{6}{5} \\ \dfrac{8}{5} \\ \dfrac{1}{5} \end{bmatrix} $
Such that $ x^T=[\dfrac{6}{5}, \dfrac{8}{5},\dfrac{1}{5}, 0, 0] $ is a feasible solution.



2.(20 pts)

  • (15 pts) FInd the largest range of the step-size, $ \alpha $, for which the fixed step gradient descent algorithm is guaranteed to convege to the minimizer of the quadratic function
$ f = \frac{1}{2} x^{T}Qx - b^{T}x $

starting from an arbitary initial condition $ x^{(0)} \in \mathbb{R}^{n} $, where $ x \in \mathbb{R}^{n} $, and $ Q = Q^{T} > 0 $.

  • (5 pts) Find the largest range of the step size, $ \alpha $, for which the fixed step gradient descent algorithm is guaranteed to converge to the minimizer of the quadratic function
$ f= 6x_{1}^{2}+2x_{2}^{2}-5 $

starting from an arbitrary initial condition $ x^{(0)} \in \mathbb{R}^{n} $

Solution of question 2:
a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3
For fixed step gradient descent algorithms $ \alpha $ should in the range $ (0,\dfrac{2}{\lambda max(Q)}) $
b) $ Q=\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix} $
such that $ \lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6}) $



3. (20 pts) Is the function

$ f(x_{1}, x_{2})=\frac{1}{(x_{1}-2)^{2} + (x_{2}+1)^{2}+3} $

locally convex, concave, or neither in the neighborhood of the point $ [2 -1]^{T} $? Justify your answer by giving all the details of your argument.

Solution of question3:
Let $ t_1=x_1-2 $, $ t_2=x_2+1 $
so that $ g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0 $ would have some convex property
with $ f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1 $
$ D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $
It is easy to see that $ \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $ is n.d .
Such that function at $ [2 -1]^T $ is strictly locally concave.


4. (20 pts) Solve the following optimization problem:

optimize $ x_{1}x_{2} $

subject to $ x_{1}+x_{2}+x_{3}=1 $

$ x_{1}+x_{2}-x_{3}=0 $

Solution of question4:
We form the lagrangian:
$ l(x,\lambda)=x_1x_2+\lambda_1(x_1+x_2+x_3-1)+\lambda_2(x_1+x_2-x_3) $
$ \begin{cases} \nabla_xl=\begin{bmatrix} x_2+\lambda_1+\lambda_2 \\ x_1+\lambda_1+\lambda_2 \\ \lambda_1+\lambda_2\end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ x_1+x_2+x_3-1=0 \\ x_1+x_2-x_3=0 \end{cases} $
No valid solution for lagrangian condition
Such that the problem can not be optimized


5. (20 pts) Solve the following optimization problem:

maximize $ 14x_{1}-x_{1}^{2}+6x_{2}-x_{2}^{2}+7 $

subject to $ x_{1}+x_{2} \leq 2 $

$ x_{1}+2x_{2} \leq 3 $

Solution of question 5:
The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ x_1+x_2-2<=0 $ and $ x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \nabla_xl(x,\mu)=\begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} $
$ \mu_1(x_1+x_2-2)=0 $
$ \mu_2(x_1+2x_2-3)=0 $
$ \mu_1>=0 $, $ \mu_2>=0 $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.




Back to ECE QE page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva