Line 28: Line 28:
  
 
c)<br>
 
c)<br>
minimum sampling frequency <math>\dfrac{1}{T}>=\dfrac{2}{a}</math>  <math>f>=\dfrac{2}{a}</math>  <math>T<=\dfrac{a}{2}</math><br>
+
minimum sampling frequency <math>\dfrac{1}{T}\ge\dfrac{2}{a}</math>  <math>f\ge\dfrac{2}{a}</math>  <math>T\le\dfrac{a}{2}</math><br>
 
<br>
 
<br>
  

Revision as of 15:52, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 2


Solution

a)
$ sinc^2(\dfrac{t}{a}) \Rightarrow |a|\Lambda(af) $ (CTFT)
Wan82_CS5-2.PNG

b)
$ y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T})) $

c)
minimum sampling frequency $ \dfrac{1}{T}\ge\dfrac{2}{a} $ $ f\ge\dfrac{2}{a} $ $ T\le\dfrac{a}{2} $

d)
$ T=\dfrac{a}{2} $
Wan82_CS5-3.PNG

e)
$ T=a $
Wan82_CS5-4.PNG


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang