Line 32: | Line 32: | ||
c)<br> | c)<br> | ||
<math>X_1(\omega)=\dfrac{1}{2}H_0(\dfrac{\omega}{2})X(\dfrac{\omega}{2})+\dfrac{1}{2}H_0(\dfrac{\omega-2\pi}{2})X(\dfrac{\omega-2\pi}{2})</math><br> | <math>X_1(\omega)=\dfrac{1}{2}H_0(\dfrac{\omega}{2})X(\dfrac{\omega}{2})+\dfrac{1}{2}H_0(\dfrac{\omega-2\pi}{2})X(\dfrac{\omega-2\pi}{2})</math><br> | ||
+ | https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-3.PNG<br> | ||
+ | <br> | ||
+ | |||
+ | d)<br> | ||
+ | <math>Y_0(\omega)=H_0(\omega)(\dfrac{1}{2}H_0(\omega)X(\omega)+\dfrac{1}{2}H_0(\omega-\pi)X(\omega-\pi))</math><br> | ||
+ | https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-4.PNG<br> | ||
+ | <br> | ||
+ | |||
+ | e)<br> | ||
+ | <math>Y_1(\omega)=-H_1(\omega_0)(\dfrac{1}{2}H_1(\omega)X(\omega)+\dfrac{1}{2}H_1{\omega-\pi}X_1{\omega-\pi})</math><br> | ||
+ | https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-5.PNG<br> | ||
+ | <br> | ||
+ | |||
+ | f)<br> | ||
+ | <math>Y(\omega)=\dfrac{1}{2}(H_0^2(\omega)-H_0^2(\pi-\omega))X(\omega)</math><br> | ||
+ | https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-6.PNG<br> | ||
+ | <br> | ||
---- | ---- |
Revision as of 10:20, 19 February 2019
Communication Signal (CS)
Question 2: Signal Processing
August 2011 Problem 1
Solution
a)
$ 8\dfrac{sin(\dfrac{3\pi}{8}n)sin(\dfrac{\pi}{8}n)}{\pi n} $
$ \Rightarrow x[n]=16\dfrac{sin(\dfrac{3\pi}{8}n)}{\pi n}\dfrac{sin(\dfrac{\pi}{8}n)}{\pi n}cos(\dfrac{\pi n}{2}) $
b)
$ X_0(\omega)=\dfrac{1}{2}H_0(\dfrac{\omega}{2})X(\dfrac{\omega}{2})+\dfrac{1}{2}H_0(\dfrac{\omega-2\pi}{2})X(\dfrac{\omega-2\pi}{2}) $
c)
$ X_1(\omega)=\dfrac{1}{2}H_0(\dfrac{\omega}{2})X(\dfrac{\omega}{2})+\dfrac{1}{2}H_0(\dfrac{\omega-2\pi}{2})X(\dfrac{\omega-2\pi}{2}) $
d)
$ Y_0(\omega)=H_0(\omega)(\dfrac{1}{2}H_0(\omega)X(\omega)+\dfrac{1}{2}H_0(\omega-\pi)X(\omega-\pi)) $
e)
$ Y_1(\omega)=-H_1(\omega_0)(\dfrac{1}{2}H_1(\omega)X(\omega)+\dfrac{1}{2}H_1{\omega-\pi}X_1{\omega-\pi}) $
f)
$ Y(\omega)=\dfrac{1}{2}(H_0^2(\omega)-H_0^2(\pi-\omega))X(\omega) $