(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...")
 
Line 22: Line 22:
 
<math>R_{x(t)x(t+\tau)}=R_{xx}(\tau)</math><br>
 
<math>R_{x(t)x(t+\tau)}=R_{xx}(\tau)</math><br>
 
Such that<br>
 
Such that<br>
<math>Y(t)=c_1X(t)-c_2X(t-\tau)</math> <math>~N((c_1-c_2)\mu_x),((c_1)^2+(c_2)^2)\sigma_x^2-2c_1c_2R_{xx}(\tau)</math><br>
+
<math>Y(t)=c_1X(t)-c_2X(t-\tau)</math> <math>~N((c_1-c_2)\mu_x),(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau))</math><br>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 23:00, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 4


Solution

Since $ X(t) $ is a wide sense Gaussian Process $ \Rightarrow X(t) $ is SSS.
$ Y(t) $ is a combination of two Gaussian distribution.
$ R_{x(t)x(t+\tau)}=R_{xx}(\tau) $
Such that
$ Y(t)=c_1X(t)-c_2X(t-\tau) $ $ ~N((c_1-c_2)\mu_x),(c_1^2+c_2^2)\sigma_x^2-2c_1c_2R_{xx}(\tau)) $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010