Line 21: Line 21:
 
Because <math>X, Y</math> are independent jointly distribute Poisson random variable.<br>
 
Because <math>X, Y</math> are independent jointly distribute Poisson random variable.<br>
 
<math>P_{X+Y}(x,y)=P_X(x)\dot P_Y(y)</math><br>
 
<math>P_{X+Y}(x,y)=P_X(x)\dot P_Y(y)</math><br>
Such that <math>P_Z(z)=\sum_{x=0}^{z} e^(-\lambda)\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!}=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}</math>
+
Such that <math>P_Z(z)=\sum_{x=0}^{z} e^(-\lambda)\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!}
 +
=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}
 +
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 22:31, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 3


Solution

a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^(-\lambda)\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!} =\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} =e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood