(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...")
 
Line 22: Line 22:
 
\begin{cases}
 
\begin{cases}
 
0 & \omega<0 \\
 
0 & \omega<0 \\
\dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0<=\opmge<h \\
+
\dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0<=\omega<h \\
 
1 & \omega>=h
 
1 & \omega>=h
 +
\end{cases}
 +
</math><br>
  
 +
b)<br>
 +
<math>f_x(\omega)=\dfrac{\partialF_x(\omega)}{\partial\omega}</math><br>
 +
<math>f_x(\omega)=
 +
\begin{cases}
 +
0 & \omega<0 \\
 +
\dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0<=\omega<h \\
 +
0 & \omega>=h
 
\end{cases}
 
\end{cases}
</math>
+
</math><br>
 +
 
 +
c)<br>
 +
<math>X(\omega)\bar=\int_{-\infty}^{\infty} \omegaf_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega</math>
 +
 
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 22:15, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 1


Solution

a)
$ F_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0<=\omega<h \\ 1 & \omega>=h \end{cases} $

b)
$ f_x(\omega)=\dfrac{\partialF_x(\omega)}{\partial\omega} $
$ f_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0<=\omega<h \\ 0 & \omega>=h \end{cases} $

c)
$ X(\omega)\bar=\int_{-\infty}^{\infty} \omegaf_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman