Line 25: Line 25:
 
The KKT condition takes the form<br>
 
The KKT condition takes the form<br>
 
<math>\begin{cases}
 
<math>\begin{cases}
\nabla_xl(x,\mu)=begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix}
+
\nabla_xl(x,\mu)=begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} \\
 
\mu_1(x_1+x_2-2)=0 \\
 
\mu_1(x_1+x_2-2)=0 \\
 
\mu_2(x_1+2x_2-3)=0 \\
 
\mu_2(x_1+2x_2-3)=0 \\
Line 31: Line 31:
 
\end{cases}
 
\end{cases}
 
</math><br>
 
</math><br>
#<math> \Rightarrow
+
<math> \Rightarrow
#\begin{cases}
+
\begin{cases}
 
+
\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\
#\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\
+
\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\
#\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\
+
\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
#\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
+
\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong
#\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong
+
\end{cases}</math><br>
 
+
#\end{cases}</math><br>
+
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
 
----
 
----

Revision as of 21:40, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ &x_1+x_2-2<=0 \\ & x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \begin{cases} \nabla_xl(x,\mu)=begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} \\ \mu_1(x_1+x_2-2)=0 \\ \mu_2(x_1+2x_2-3)=0 \\ \mu_1>=0, \mu_2>=0 \end{cases} $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics