(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Auto...")
 
Line 33: Line 33:
 
<math> \Rightarrow
 
<math> \Rightarrow
 
\begin{cases}
 
\begin{cases}
\begin{matrix}
+
 
\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & does not fit condition \\
+
\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\
\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & does not fit condition \\
+
\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\
 
\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
 
\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & does not fit condition
+
\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong
\end{matrix}
+
 
 
\end{cases}</math><br>
 
\end{cases}</math><br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>

Revision as of 21:38, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ &x_1+x_2-2<=0 \\ & x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \begin{cases} \nabla_xl(x,\mu)=begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} \mu_1(x_1+x_2-2)=0 \\ \mu_2(x_1+2x_2-3)=0 \\ \mu_1>=0, \mu_2>=0 \end{cases} $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett