(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Auto...")
 
Line 23: Line 23:
 
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>  
 
such that <math>\lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6})</math><br>  
 
----
 
----
[[QE2016_AC-3_ECE580|Back to QE AC question 2, August 2015]]
+
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 12:24, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 2


Solution

a) From the Optimization textbook, Zak Stanislaw. Lemma 8.3
For fixed step gradient descent algorithms $ \alpha $ should in the range $ (0,\dfrac{2}{\lambda max(Q)}) $
b) $ f(x)-\dfrac{1}{2}x^TQx-b^Tx=\dfrac{1}{2}x^T\begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix}-5 $
such that $ \lambda max(Q)=12 \Rightarrow \alpha \in (0, \dfrac{1}{6}) $


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang