(revise area name)
(formula1)
Line 26: Line 26:
 
Problem 1. [50 pts] <br>
 
Problem 1. [50 pts] <br>
 
Equation 1 below is the formula for reconstructing the DTFT, <math> X(\omega) </math>, from <math>N</math> equi-spaced samples of the DTFT over <math> 0 \leq \omega \leq 2\pi </math>. <math> X_{N}(k) = X(\frac{2\pi k}{N},k=0,1,...,N-1) </math> is the N-pt DFT of x[n], which corresponds to N equi-spaced samples of the DTFT of x[n] over <math>0 \leq \omega \leq 2\pi</math>.
 
Equation 1 below is the formula for reconstructing the DTFT, <math> X(\omega) </math>, from <math>N</math> equi-spaced samples of the DTFT over <math> 0 \leq \omega \leq 2\pi </math>. <math> X_{N}(k) = X(\frac{2\pi k}{N},k=0,1,...,N-1) </math> is the N-pt DFT of x[n], which corresponds to N equi-spaced samples of the DTFT of x[n] over <math>0 \leq \omega \leq 2\pi</math>.
<center><math> X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{sin[\frac{N}{2}(\omega - \frac{2 \pi k}{N})]}{N sin[\frac{1}{2} (\omega -\frac{2 \pi k}{N})]} e^{-j\frac{N-1}{2}(\omega - \frac{2 \pi k}{N}) } </math></center>,(1)<br/>
+
<center><math> X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{sin[\frac{N}{2}(\omega - \frac{2 \pi k}{N})]}{N sin[\frac{1}{2} (\omega -\frac{2 \pi k}{N})]} e^{-j\frac{N-1}{2}(\omega - \frac{2 \pi k}{N}) } </math>(1)</center><br/>
 
(a) Let x[n] be a discrete-time rectangular pulse of length <math>L=12</math> as defined below: <br/>
 
(a) Let x[n] be a discrete-time rectangular pulse of length <math>L=12</math> as defined below: <br/>
<center><math> x[n] = {-1,-1,-1,-1,1,1,1,1,1,1,1,1} </math></center> <br/>
+
<center><math> x[n] = \{-1,-1,-1,-1,1,1,1,1,1,1,1,1 \} </math></center> <br/>
 
(i) <math> X_{N}(k) </math> is computed as a 16-point DFT of x[n] and used in Eqn (1) with N=16. Write a close-form expression for resulting reconstructed spectrum <math> X_{r}(\omega) </math>. <br/>
 
(i) <math> X_{N}(k) </math> is computed as a 16-point DFT of x[n] and used in Eqn (1) with N=16. Write a close-form expression for resulting reconstructed spectrum <math> X_{r}(\omega) </math>. <br/>
 
(ii)  
 
(ii)  

Revision as of 23:18, 10 February 2019


ECE Ph.D. Qualifying Exam

Communicates & Signal Process (CS)

Question 2: Signal Processing

August 2017




Problem 1. [50 pts]
Equation 1 below is the formula for reconstructing the DTFT, $ X(\omega) $, from $ N $ equi-spaced samples of the DTFT over $ 0 \leq \omega \leq 2\pi $. $ X_{N}(k) = X(\frac{2\pi k}{N},k=0,1,...,N-1) $ is the N-pt DFT of x[n], which corresponds to N equi-spaced samples of the DTFT of x[n] over $ 0 \leq \omega \leq 2\pi $.

$ X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{sin[\frac{N}{2}(\omega - \frac{2 \pi k}{N})]}{N sin[\frac{1}{2} (\omega -\frac{2 \pi k}{N})]} e^{-j\frac{N-1}{2}(\omega - \frac{2 \pi k}{N}) } $(1)

(a) Let x[n] be a discrete-time rectangular pulse of length $ L=12 $ as defined below:

$ x[n] = \{-1,-1,-1,-1,1,1,1,1,1,1,1,1 \} $

(i) $ X_{N}(k) $ is computed as a 16-point DFT of x[n] and used in Eqn (1) with N=16. Write a close-form expression for resulting reconstructed spectrum $ X_{r}(\omega) $.
(ii)




Back to ECE QE page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva