(ECE580_AC3_2017_5question)
Line 37: Line 37:
 
starting from an arbitary initial condition <math> x^{(0)} \in \mathbb{R}^{n} </math>, where  <math> x \in \mathbb{R}^{n} </math>, and <math>Q = Q^{T} > 0</math>. <br/>
 
starting from an arbitary initial condition <math> x^{(0)} \in \mathbb{R}^{n} </math>, where  <math> x \in \mathbb{R}^{n} </math>, and <math>Q = Q^{T} > 0</math>. <br/>
 
*(5 pts) Find the largest range of the step size, <math>\alpha</math>, for which the fixed step gradient descent algorithm is guaranteed to converge to the minimizer of the quadratic function<br/>
 
*(5 pts) Find the largest range of the step size, <math>\alpha</math>, for which the fixed step gradient descent algorithm is guaranteed to converge to the minimizer of the quadratic function<br/>
<center><math> f= 6x_{1}^{2}+2x_{2}^{2}-5 </math></center>, <br/>
+
<center><math> f= 6x_{1}^{2}+2x_{2}^{2}-5 </math></center> <br/>
 
starting from an arbitrary initial condition <math>x^{(0)} \in \mathbb{R}^{n}</math>
 
starting from an arbitrary initial condition <math>x^{(0)} \in \mathbb{R}^{n}</math>
  
Line 43: Line 43:
 
----
 
----
 
3. (20 pts) Is the function <br/>
 
3. (20 pts) Is the function <br/>
 +
<center><math> f(x_{1}, x_{2})=\frac{1}{(x_{1}-2)^{2} + (x_{2}+1)^{2}+3} </math></center><br>
 +
locally convex, concave, or neither in the neighborhood of the point <math> [2 -1]^{T} </math>? Justify your answer by giving all the details of your argument.
 +
 +
 +
----
 +
4. (20 pts) Solve the following optimization problem:
 +
<center>optimize <math> x_{1}x_{2} </math> </center><br>
 +
<center>subject to <math> x_{1}+x_{2}+x_{3}=1 </math> </center><br>
 +
<center><math> x_{1}+x_{2}-x_{3}=0 </math></center><br>
 +
 +
----
 +
5. (20 pts) Solve the following optimization problem:<br/>
 +
<center>maximize <math> 14x_{1}-x_{1}^{2}+6x_{2}-x_{2}^{2}+7 </math></center><br>
 +
<center>subject to <math>x_{1}+x_{2} \leq 2</math></center><br>
 +
<center><math> x_{1}+2x_{2} \leq 3 </math></center>
 +
 +
----
 +
----
 +
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]

Revision as of 22:52, 27 January 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2017



Student answers and discussions for Part 1,2,3,4,5

1.(20 pts) Considern the following linear program,

minimize $ 2x_{1} + x_{2} $,

subject to $ x_{1} + 3x_{2} \geq 6 $

$ 2x_{1} + x_{2} \geq 4 $

$ x_{1} + x_{2} \leq 3 $

$ x_{1} \geq 0 $, $ x_{2} \geq 0 $.

Convert the above linear program into standard form and find an initial basix feasible solution for the program in standard form.


2.(20 pts)

  • (15 pts) FInd the largest range of the step-size, $ \alpha $, for which the fixed step gradient descent algorithm is guaranteed to convege to the minimizer of the quadratic function
$ f = \frac{1}{2} x^{T}Qx - b^{T}x $

starting from an arbitary initial condition $ x^{(0)} \in \mathbb{R}^{n} $, where $ x \in \mathbb{R}^{n} $, and $ Q = Q^{T} > 0 $.

  • (5 pts) Find the largest range of the step size, $ \alpha $, for which the fixed step gradient descent algorithm is guaranteed to converge to the minimizer of the quadratic function
$ f= 6x_{1}^{2}+2x_{2}^{2}-5 $

starting from an arbitrary initial condition $ x^{(0)} \in \mathbb{R}^{n} $



3. (20 pts) Is the function

$ f(x_{1}, x_{2})=\frac{1}{(x_{1}-2)^{2} + (x_{2}+1)^{2}+3} $

locally convex, concave, or neither in the neighborhood of the point $ [2 -1]^{T} $? Justify your answer by giving all the details of your argument.



4. (20 pts) Solve the following optimization problem:

optimize $ x_{1}x_{2} $

subject to $ x_{1}+x_{2}+x_{3}=1 $

$ x_{1}+x_{2}-x_{3}=0 $


5. (20 pts) Solve the following optimization problem:

maximize $ 14x_{1}-x_{1}^{2}+6x_{2}-x_{2}^{2}+7 $

subject to $ x_{1}+x_{2} \leq 2 $

$ x_{1}+2x_{2} \leq 3 $



Back to ECE QE page

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010