Line 7: | Line 7: | ||
&= \cos(y) + i\sin(y) | &= \cos(y) + i\sin(y) | ||
\end{align} | \end{align} | ||
− | </math> | + | </math> (7) |
Line 16: | Line 16: | ||
&= e^{x}(\cos(y) + i\sin(y)) | &= e^{x}(\cos(y) + i\sin(y)) | ||
\end{align} | \end{align} | ||
− | </math> | + | </math> (7) |
Revision as of 22:47, 2 December 2018
Euler's Equation And De Moivre's Formula
Euler's Equation is put simply as the following:
$ \begin{align} e^{iy} &= \cos(y) + i\sin(y) \end{align} $ (7)
In a more general case, it can more important to see if $ z = z + iy $, then $ e^{z} $ is defined to be the complex number
$ \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $ (7)