Line 12: Line 12:
 
               
 
               
 
<math>
 
<math>
   e^ix = \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}} = \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}} = 1 + ix - \frac{x^2}2 -  
+
   \begin{align} e^ix &= \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}}\\ &= \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}}\\ &= 1 + ix - \frac{x^2}2 -  
 
   i\frac{x^3}6 + \frac{x^4}{24} + \cdots
 
   i\frac{x^3}6 + \frac{x^4}{24} + \cdots
 
</math>
 
</math>
Line 18: Line 18:
 
But by rearranging this, one gets the identity
 
But by rearranging this, one gets the identity
  
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 
<math>
 
<math>
 
   e^ix = \sum^{\infty}_{n=0}{\frac{(-x)^{2n}}{(2n)!}} + i\sum^{\infty}_{n=0}{\frac{(-x)^{2n+1}}{(2n+1)!}}
 
   e^ix = \sum^{\infty}_{n=0}{\frac{(-x)^{2n}}{(2n)!}} + i\sum^{\infty}_{n=0}{\frac{(-x)^{2n+1}}{(2n+1)!}}

Revision as of 11:43, 2 December 2018

$ e $ and Trigonometry

The Taylor series of $ e^x $ is

                $ e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots $

Using this equation, it is possible to relate $ e $ to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, $ ix $ for example. This yields:

                $ \begin{align} e^ix &= \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}}\\ &= \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}}\\ &= 1 + ix - \frac{x^2}2 - i\frac{x^3}6 + \frac{x^4}{24} + \cdots $

But by rearranging this, one gets the identity

                $ e^ix = \sum^{\infty}_{n=0}{\frac{(-x)^{2n}}{(2n)!}} + i\sum^{\infty}_{n=0}{\frac{(-x)^{2n+1}}{(2n+1)!}} $


References:
(Reference 1)
(Reference 2)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood