Line 2: Line 2:
 
In discrete time, a function is period if there exists an integer N such that x[n+N] = x[n]
 
In discrete time, a function is period if there exists an integer N such that x[n+N] = x[n]
  
An example of a discrete period function would be <math>e^j*w*n)</math>
+
An example of a discrete time periodic function would be e^(jwn) if and only if w/(2*pi) is a rational number.
  
 
In continuous time, a function x(t) is periodic if there exists a T>0 such that x(t+T) = x(t)
 
In continuous time, a function x(t) is periodic if there exists a T>0 such that x(t+T) = x(t)
 +
An example of a continuous time periodic function would be cos(x) with a period of 2*pi.
  
 
== Non Periodic Functions ==
 
== Non Periodic Functions ==
 
All functions that are not periodic I suppose would then be Non-periodic.
 
All functions that are not periodic I suppose would then be Non-periodic.

Revision as of 15:45, 4 September 2008

Periodic Functions

In discrete time, a function is period if there exists an integer N such that x[n+N] = x[n]

An example of a discrete time periodic function would be e^(jwn) if and only if w/(2*pi) is a rational number.

In continuous time, a function x(t) is periodic if there exists a T>0 such that x(t+T) = x(t) An example of a continuous time periodic function would be cos(x) with a period of 2*pi.

Non Periodic Functions

All functions that are not periodic I suppose would then be Non-periodic.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang