Line 2: Line 2:
 
</center>
 
</center>
 
----
 
----
==Question==
 
 
 
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following DT signal:
 
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following DT signal:
  
  
<math>x[n]= e^{-j3\pi n} </math>
+
<math>x[n]= e^{-j3\pi n} </math>
  
 
Norm of a signal:
 
Norm of a signal:
Line 22: Line 20:
 
&=\infty. \\
 
&=\infty. \\
 
\end{align}</math>  
 
\end{align}</math>  
 +
  
 
<math>E_{\infty} = \infty</math>.  
 
<math>E_{\infty} = \infty</math>.  
Line 33: Line 32:
 
&= 1  \\
 
&= 1  \\
 
\end{align}</math>
 
\end{align}</math>
 +
  
 
<math>P_{\infty} = 1 </math>
 
<math>P_{\infty} = 1 </math>
 +
 +
Conclusion:
 +
 +
Therefore, <math>E_{\infty} = \infty</math>, <math>P_{\infty} = 1 </math>

Revision as of 13:26, 1 December 2018

Topic: Energy and Power Computation of a Signal </center>


Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following DT signal:


$ x[n]= e^{-j3\pi n} $

Norm of a signal: $ \begin{align} |je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}} &= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}} &= 1 \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


$ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ P_{\infty} = 1 $

Conclusion:

Therefore, $ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch