Line 3: | Line 3: | ||
=CT and DT Convolution Examples= | =CT and DT Convolution Examples= | ||
+ | In this course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain positive or negative input combinations. Here are some examples for how to deal with them. | ||
− | + | =CT Examples= | |
+ | Example 1: t is positive for both h(t) and x(t) | ||
+ | |||
+ | <math>x(t) = u(t)</math><br /> | ||
+ | <math>h(t) = e^{-2t} u(t)</math><br /> | ||
+ | <math>y(t) = h(t)*x(t)</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau</math><br /> | ||
+ | <math>y(t) = \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau</math><br /> | ||
+ | |||
+ | Since <math>u(t - \tau) = 1</math><br /> | ||
+ | <math>\tau <= t</math><br /> | ||
+ | |||
+ | <math>y(t)=\begin{cases} | ||
+ | \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t>=0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y(t)=\begin{cases} | ||
+ | \frac{e^{-2t}-1}{-2} , & \mbox{if }t>=0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y(t)=\frac{u(t)}{2}(1-e^{-2t})<br /> | ||
+ | |||
+ | |||
+ | |||
+ | Example 2: t is negative for both h(t) and x(t) | ||
+ | |||
+ | <math>x(t) = u(-t)</math><br /> | ||
+ | <math>h(t) = e^{3t} u(-t)</math><br /> | ||
+ | <math>y(t) = h(t)*x(t)</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau</math><br /> | ||
+ | |||
+ | Since <math>u(-t + \tau) = 1</math><br /> | ||
+ | <math>\tau >= t</math><br /> | ||
+ | |||
+ | <math>y(t)=\begin{cases} | ||
+ | \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t<=0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | |||
+ | <math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br /> | ||
+ | <math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br /> | ||
+ | |||
+ | |||
+ | |||
+ | Example 3: t is negative for x(t) and positive for h(t) | ||
+ | |||
+ | <math>x(t) = u(-t)</math><br /> | ||
+ | <math>h(t) = e^{-2t} u(t)</math><br /> | ||
+ | <math>y(t) = h(t)*x(t)</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br /> | ||
+ | <math>y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau</math><br /> | ||
+ | <math>y(t) = \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau</math><br /> | ||
+ | |||
+ | Since <math>u(-t + \tau) = 1</math><br /> | ||
+ | <math>\tau >= t</math><br /> | ||
+ | |||
+ | <math>y(t)=\begin{cases} | ||
+ | \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t<=0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | |||
+ | <math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br /> | ||
+ | <math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br /> | ||
+ | |||
+ | |||
+ | =DT Examples= | ||
[[ Main Page|Back to Main Page]] | [[ Main Page|Back to Main Page]] |
Revision as of 13:15, 29 November 2018
CT and DT Convolution Examples
In this course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain positive or negative input combinations. Here are some examples for how to deal with them.
CT Examples
Example 1: t is positive for both h(t) and x(t)
$ x(t) = u(t) $
$ h(t) = e^{-2t} u(t) $
$ y(t) = h(t)*x(t) $
$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $
$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau $
$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau $
Since $ u(t - \tau) = 1 $
$ \tau <= t $
$ y(t)=\begin{cases} \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t>=0 \\ 0, & \mbox else \end{cases} $
$ y(t)=\begin{cases} \frac{e^{-2t}-1}{-2} , & \mbox{if }t>=0 \\ 0, & \mbox else \end{cases} $
$ y(t)=\frac{u(t)}{2}(1-e^{-2t})<br /> Example 2: t is negative for both h(t) and x(t) <math>x(t) = u(-t) $
$ h(t) = e^{3t} u(-t) $
$ y(t) = h(t)*x(t) $
$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $
$ y(t) = \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau $
$ y(t) = \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau $
Since $ u(-t + \tau) = 1 $
$ \tau >= t $
$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t<=0 \\ 0, & \mbox else \end{cases} $
$ y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0 $
$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $
Example 3: t is negative for x(t) and positive for h(t)
$ x(t) = u(-t) $
$ h(t) = e^{-2t} u(t) $
$ y(t) = h(t)*x(t) $
$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $
$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau $
$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau $
Since $ u(-t + \tau) = 1 $
$ \tau >= t $
$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t<=0 \\ 0, & \mbox else \end{cases} $
$ y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0 $
$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $