Line 41: Line 41:
  
 
| Time Shifting
 
| Time Shifting
|
+
| <math> x(t-t_0) \  </math>
 +
| <math>e^{-j\omega t_0}X(\omega)</math>
 
|-
 
|-
  
 
| Frequency Shifting
 
| Frequency Shifting
|
+
| <math>e^{j\omega_0 t}x(t)</math>
 +
| <math> \mathcal{X} (\omega - \omega_0) </math>
 
|-
 
|-
  
 
| Conjugation
 
| Conjugation
|
+
| <math> x^{*}(t) \  </math>
 +
| <math> \mathcal{X}^{*} (-\omega)</math>
 
|-
 
|-
  
 
| Scaling
 
| Scaling
|
+
| <math> x(at) \  </math>
 +
| <math>\frac{1}{|a|} \mathcal{X} (\frac{\omega}{a})</math>
 
|-
 
|-
  
 
| Multiplication
 
| Multiplication
|
+
| <math>x(t)y(t) \ </math>
 +
| <math>\frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(\omega-\theta)d\theta</math>
 
|-
 
|-
  
 
| Convolution
 
| Convolution
|
+
| <math>x(t)*y(t) \ </math>
 +
| <math> \mathcal{X}(\omega)\mathcal{Y}(\omega) \!</math>
 
|-
 
|-
  
 
| Differentiation  
 
| Differentiation  
|
+
| <math> tx(t) \  </math>
 +
| <math>j\frac{d}{d\omega} \mathcal{X} (\omega)</math>
 
|-
 
|-
  
 
| Parseval's Relation
 
| Parseval's Relation
|
+
| | <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw</math>
 
|-
 
|-

Revision as of 15:30, 14 November 2018

CTFT of periodic signals and some properties with proofs

Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $
Name $ x(t) \longrightarrow \ $ $ \mathcal{X}(\omega) $
Linearity $ ax(t) + by(t) \ $ $ a \mathcal{X}(\omega) + b \mathcal{Y} (\omega) $
Time Shifting $ x(t-t_0) \ $ $ e^{-j\omega t_0}X(\omega) $
Frequency Shifting $ e^{j\omega_0 t}x(t) $ $ \mathcal{X} (\omega - \omega_0) $
Conjugation $ x^{*}(t) \ $ $ \mathcal{X}^{*} (-\omega) $
Scaling $ x(at) \ $ $ \frac{1}{|a|} \mathcal{X} (\frac{\omega}{a}) $
Multiplication $ x(t)y(t) \ $ $ \frac{1}{2\pi} \mathcal{X}(\omega)*\mathcal{Y}(\omega) =\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\theta)\mathcal{Y}(\omega-\theta)d\theta $
Convolution $ x(t)*y(t) \ $ $ \mathcal{X}(\omega)\mathcal{Y}(\omega) \! $
Differentiation $ tx(t) \ $ $ j\frac{d}{d\omega} \mathcal{X} (\omega) $
Parseval's Relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(w)|^2 dw $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett