Line 32: Line 32:
  
 
===== - Properties of the Continuous-time Fourier Transform =====
 
===== - Properties of the Continuous-time Fourier Transform =====
 +
 +
 
{| border="1" class="wikitable"
 
{| border="1" class="wikitable"
 
|-
 
|-
! Function
+
! name
! CTFT
+
! Property
! Proof
+
|-
|-}
+
 
 +
| Linearity
 +
|
 +
|-
 +
 
 +
| Time Shifting
 +
|
 +
|-
 +
 
 +
| Frequency Shifting
 +
|
 +
|-
 +
 
 +
| Conjugation
 +
|
 +
|-
 +
 
 +
| Scaling
 +
|
 +
|-
 +
 
 +
| Multiplication
 +
|
 +
|-
 +
 
 +
| Convolution
 +
|
 +
|-
 +
 
 +
| Differentiation
 +
|
 +
|-
 +
 
 +
| Parseval's Relation
 +
|
 +
|-

Revision as of 15:23, 14 November 2018

CTFT of periodic signals and some properties with proofs

- Fourier series of periodic signals
- Properties of the Continuous-time Fourier Transform
Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $
name Property
Linearity
Time Shifting
Frequency Shifting
Conjugation
Scaling
Multiplication
Convolution
Differentiation
Parseval's Relation

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett