Line 32: | Line 32: | ||
===== - Properties of the Continuous-time Fourier Transform ===== | ===== - Properties of the Continuous-time Fourier Transform ===== | ||
+ | |||
+ | |||
{| border="1" class="wikitable" | {| border="1" class="wikitable" | ||
|- | |- | ||
− | ! | + | ! name |
− | ! | + | ! Property |
− | + | |- | |
− | |- | + | |
+ | | Linearity | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Time Shifting | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Frequency Shifting | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Conjugation | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Scaling | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Multiplication | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Convolution | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Differentiation | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | | Parseval's Relation | ||
+ | | | ||
+ | |- |
Revision as of 15:23, 14 November 2018
CTFT of periodic signals and some properties with proofs
- Fourier series of periodic signals
Function | CTFT | Proof |
---|---|---|
$ sin(\omega_0t) $ | $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $ | |
$ cos(\omega_0t) $ | $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $ | |
$ e^{j\omega_0t} $ | $ 2\pi\delta(\omega - \omega_0) $ | |
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $ |
name | Property |
---|---|
Linearity | |
Time Shifting | |
Frequency Shifting | |
Conjugation | |
Scaling | |
Multiplication | |
Convolution | |
Differentiation | |
Parseval's Relation |