Line 23: | Line 23: | ||
|- | |- | ||
− | |<math>e^{j\omega_0t} | + | |<math>e^{j\omega_0t} </math> |
|<math>2\pi\delta(\omega - \omega_0) </math> | |<math>2\pi\delta(\omega - \omega_0) </math> | ||
+ | | | ||
+ | |- | ||
+ | |||
+ | |<math> \sum_{k=-\infty}^{\infty}u(t+3k) - u(t-1+3k) </math> | ||
+ | | | ||
| | | | ||
|- | |- |
Revision as of 15:13, 14 November 2018
CTFT of periodic signals and some properties with proofs
- Fourier series of periodic signals
Function | CTFT | Proof |
---|---|---|
$ sin(\omega_0t) $ | $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $ | |
$ cos(\omega_0t) $ | $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $ | |
$ e^{j\omega_0t} $ | $ 2\pi\delta(\omega - \omega_0) $ | |
$ \sum_{k=-\infty}^{\infty}u(t+3k) - u(t-1+3k) $ |