Line 23: Line 23:
 
|-
 
|-
  
|<math>e^{j\omega_0t}u(t) </math>
+
|<math>e^{j\omega_0t} </math>
 
|<math>2\pi\delta(\omega - \omega_0) </math>
 
|<math>2\pi\delta(\omega - \omega_0) </math>
 +
|
 +
|-
 +
 +
|<math> \sum_{k=-\infty}^{\infty}u(t+3k) - u(t-1+3k) </math>
 +
|
 
|
 
|
 
|-
 
|-

Revision as of 15:13, 14 November 2018


CTFT of periodic signals and some properties with proofs

- Fourier series of periodic signals
Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+3k) - u(t-1+3k) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood