Line 14: Line 14:
  
 
|<math>sin(\omega_0t) </math>
 
|<math>sin(\omega_0t) </math>
|<math>\frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)</math>
+
|<math>\frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0))</math>
 
|<math> </math>
 
|<math> </math>
 
|-
 
|-
  
 
|<math>cos(\omega_0t) </math>
 
|<math>cos(\omega_0t) </math>
|<math>\frac{1}{2}e^{j\omega_0 t} + \frac{1}{2}e^{-j\omega_0 t} </math>
+
|<math>\pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0))</math>
 
|
 
|
 
|-
 
|-

Revision as of 15:11, 14 November 2018


CTFT of periodic signals and some properties with proofs

- Fourier series of periodic signals
Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t}u(t) $ $ 2\pi\delta(\omega - \omega_0) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood