Line 4: Line 4:
  
 
===== - Fourier series of periodic signals =====
 
===== - Fourier series of periodic signals =====
 +
  
 
{| border="1" class="wikitable"
 
{| border="1" class="wikitable"
Line 9: Line 10:
 
! Function  
 
! Function  
 
! Fourier Series  
 
! Fourier Series  
 +
! Proof
 
|-
 
|-
  
 +
|<math>sin(\omega_0t) </math>
 +
|<math>\frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t} </math>
 +
|
 +
|-
  
 +
|<math>cos(\omega_0t) </math>
 +
|<math>\frac{1}{2}e^{j\omega_0 t} + \frac{1}{2}e^{-j\omega_0 t} </math>
 +
|
 +
|-
  
 
+
|<math>e^{\alpha t}u(t) </math>
 
+
|<math>\frac{1}{\alpha + j\omega} </math>
===== - Properties of CTFT =====
+
|
{| border="1" class="wikitable"
+
|-
+
! Name
+
! Property
+
! Proof
+
 
|-
 
|-
 +
 +
}

Revision as of 14:59, 14 November 2018


CT Fourier Series for periodic signals and some properties with proofs

- Fourier series of periodic signals
}
Function Fourier Series Proof
$ sin(\omega_0t) $ $ \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t} $
$ cos(\omega_0t) $ $ \frac{1}{2}e^{j\omega_0 t} + \frac{1}{2}e^{-j\omega_0 t} $
$ e^{\alpha t}u(t) $ $ \frac{1}{\alpha + j\omega} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett