Line 38: | Line 38: | ||
|Time Shifting | |Time Shifting | ||
|<math>\mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) </math> | |<math>\mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) </math> | ||
− | |<math>\int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt </math><br/> | + | |<math>\mathfrak{F}(g(t - a)) = \int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt </math><br/> |
− | <math>\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du </math><br/> | + | <math>=\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du </math><br/> |
− | <math>e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du </math><br/> | + | <math>=e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du </math><br/> |
− | <math>e^{-i2\pi fa} G(f)</math><br/> | + | <math>=e^{-i2\pi fa} G(f)</math><br/> |
+ | |Time Scaling | ||
+ | |<math>\mathfrak{F}(g(ct)) = |fraq{G(\fraq{f}{c}}{|c|} </math><br/> | ||
+ | |<math>\mathfrak{F}(g(ct)) = \int_{-\infty}^\infty g(ct)e^{-i2\pi ft}dt </math><br/> | ||
|- | |- | ||
} | } |
Revision as of 20:42, 22 April 2018
Table of CT Fourier Series Coefficients and Properties
Fourier series Coefficients
Function | Fourier Series | Coefficients |
---|---|---|
Properties of CT Fourier systems
Property Name | Property | Proof | |||
---|---|---|---|---|---|
Linearity | $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ | $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $ $ =c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $ | |||
Time Shifting | $ \mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) $ | $ \mathfrak{F}(g(t - a)) = \int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt $ $ =\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du $ |
Time Scaling | $ \mathfrak{F}(g(ct)) = |fraq{G(\fraq{f}{c}}{|c|} $ |
$ \mathfrak{F}(g(ct)) = \int_{-\infty}^\infty g(ct)e^{-i2\pi ft}dt $ |