Line 41: Line 41:
 
<math>\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du </math><br/>
 
<math>\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du </math><br/>
 
<math>e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du </math><br/>
 
<math>e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du </math><br/>
<math>e^{-i2\pi fa}G(f)<\math><br/>
+
<math>e^{-i2\pi fa} G(f)</math><br/>
  
 
|-
 
|-
 
}
 
}

Revision as of 20:39, 22 April 2018


Table of CT Fourier Series Coefficients and Properties

Fourier series Coefficients

Function Fourier Series Coefficients


Properties of CT Fourier systems

}
Property Name Property Proof
Linearity $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $

$ =c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $
$ =c_1G(f) + c_2H(f) $

Time Shifting $ \mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) $ $ \int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt $

$ \int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du $
$ e^{-i2\pi fa}\int_{-\infty}^\infty g(u)e^{-i2\pi fu}du $
$ e^{-i2\pi fa} G(f) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood